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This paper presents an optimal control method for a class of distributed-parameter systems governed by
first order, quasilinear hyperbolic partial differential e quations that arise in many physical systems. Such
systems are characterized by time delays since informationis transported from one state to another by wave
propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embed-
ded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation
constraint that models actuator dynamics of the system. Thehyperbolic equation is thus coupled with the
ordinary differential equation via the boundary condition . Optimality of this coupled system is investigated
using variational principles to seek an adjoint formulation of the optimal control problem. The results are then
applied to implement a model predictive control design for awind tunnel to eliminate a transport delay effect
that causes a poor Mach number regulation.

I. Introduction

The terminology of distributed-parameter system is used todescribe physical systems whose state variables are
functions of both space and time that are usually modeled by partial differential equations (PDEs). Optimal control
of distributed-parameter systems has been studied extensively in mathematical literature, but applications of this type
of control are limited in practical control engineering. Hyperbolic PDEs are used to model transport systems whose
information is carried from one point to another within those systems as a function of space and time.1 Examples
of transport systems are numerous in many physical applications such as fluid flow in gas distribution pipelines,2 air
traffic systems,3 highway traffic systems,4 to name a few. These equations describe wave propagation that exists in
transport systems to propagate information from one point to another within the continuum. A characteristic of a
hyperbolic system is time delay which describes a finite timethat information is transported from one location to
another. Consider the simplest hyperbolic equation

∂y

∂t
+ a

∂y

∂x
= 0 (1)

The solution of this equation is

y = f
(

t−
x

a

)

(2)

Equation (2) describes the solution of a wave of a transport process that propagates at a wave speeda and the term
x/a is a variable transport time delay.

As with any PDEs, boundary conditions are used to specify configurations of these transport systems. If the
information is carried in one direction without returning to its starting position, then we say that the system is open-
loop. An example of an open-loop system is gas flow through an aircraft engine. On the other hand, if the information
returns to its starting position, then the system is said to be closed-loop. An example of a closed-loop system is the
cardio-vascular circulatory system. Boundary conditionsassociated with closed-loop systems are usually periodic in
nature.

The flow of information is usually supplied at the system boundary by a forced process that provides a motive
force to move the information along the way by wave propagation. For example, a common device for accomplishing
this objective in fluid transport systems is a pump which supplies a positive pressure head to displace the fluid volume
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in the flow direction. Such a process whereby the control is applied at the boundary of the continuum is called a
boundary control process. In real systems, boundary control processes are often governed by other auxiliary dynamical
processes. For example, a positive-displacement pump may be driven by an electrical motor that imposes a constraint
on the pump speed according to the motor torque dynamics. Thepump speed in this case is a boundary control
variable.

In this study, we present an optimal control method for a class of closed-loop hyperbolic distributed-parameter
systems whose boundary control process is constrained by a dynamical system governed by a nonlinear ordinary
differential equation (ODE) via a periodic boundary condition. The optimal control problem is formulated by an
adjoint method to seek necessary conditions for optimalityvia calculus of variations. The theory is then used to
develop a model predictive linear-quadratic regulator optimal control that results in a modified Riccati equation. The
model predictive control computes control inputs based on model information at the current time that need to be apply
ahead of error signals in order to minimize system disturbances due to time delays. Thus, it is effectively a feedforward
control. We apply this theory to solve a flow control problem in a wind tunnel.

II. Problem Formulation

Transport phenomena are governed by the conservation laws equations which dictate the conservation of some
quantities such as traffic density, mass flux, and enthalpy. These equations are generally hyperbolic in nature. For a
1-D system, these equations are expressed in a conservationform as5

∂y

∂t
+
∂F (y, x)

∂x
+ Q (y, x) = 0 ∀x ∈ [0, L] , t ∈ [0, tf ] (3)

wherey (x, t) : [0, L] × [0, tf ] → R
n in classC1 is a vector of conserved quantities,F (y, x) is a flux function, and

Q (y, x) is a non-homogeneous source term.
By explicit differentiation, Eq. (3) can be rewritten in as

∂y

∂t
+ A (y, x)

∂y

∂x
+ B (y, x) = 0 ∀x ∈ [0, L] , t ∈ [0, tf ] (4)

whereA (y, x) : R
n × [0, L] → R

n × R
n is a characteristic matrix such thatA (y, x) = Fy (y, x) andB (y, x) :

R
n × [0, L] → R

n is a non-homogeneous source term such thatB (y, x) = Q (y, x) + Fx (y, x).
Equation (4) is a system of first order, quasilinear hyperbolic equations due to the fact that the matrixA hasn real,

distinct eigenvalues such that

λ1 (A) < λ2 (A) < . . . < λm (A) < λm+1 (A) < λm+2 < . . . < λn (A)

for all y (x, t) ∈ R
n, x ∈ [0, L], andt ∈ [0, tf ], wherem < n are number of negative eigenvalues ofA.

The eigenvalues are the wave speeds of the transport system and the direction of the wave propagation is called a
characteristic direction. Ifm > 0, the information in the continuum is carried in both the upstream and downstream
directions by negative wave speedsλi, i = 1, 2, . . . ,m and positive wave speedsλi, i = m + 1,m + 2, . . . , n;
respectively. If the solution domain is0 ≤ x ≤ L, then for the information to be transported in the upstream direction
by the negative wave speeds, information must exist at the boundaryx = L. Similarly, information must also exist at
the boundaryx = 0 in order for the information to be carried downstream by the positive wave speeds. Therefore, the
number of upstream and downstream boundary conditions mustmatch the number of negative and positive eigenvalues.
This is known as the boundary condition compatibility.

In a closed-loop transport system, information is carried from one point to another and then returned back to
the starting position as illustrated in Fig. 1. To enable this information flow, a periodic boundary control process is
embedded within the system. For a closed-loop system, the boundary conditions atx = 0 are affected by the boundary
conditions atx = L since the information must be returned to its starting position. Thus, in general for a closed-loop
system, we specify the following general nonlinear periodic boundary condition for Eq. (4)

y (0, t) = g (y (L, t) ,u (t)) ∀t ∈ [0, tf ] (5)

whereu (t) : [0, tf ] → R
m in classC1 is a boundary control vector, andg (y (L, t) ,u) : R

n × R
m → R

n is a
nonlinear forcing function that relates the transport state vectors atx = 0 andx = L and the boundary control vector
u.
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Fig. 1 - Closed-Loop Transport Model

To ensure the boundary condition compatibility for all signs of eigenvalues, the Fréchet derivative or the Jacobian
of g with respect toy (L, t) is required to have a full rank or

dim
[

gy(L,t)

]

= n (6)

In many real systems, boundary control processes are actually controlled by other auxiliary processes. These
auxiliary processes may be dynamical so that their dynamicscan be described by a nonlinear ODE

u̇ = f (y (0, t) ,y (L, t) ,u,v) (7)

wherev (t) : [0, tf ] → R
l is an auxiliary control vector that belongs to a convex subset of admissible auxiliary control

Vad ⊆ R
l, andf (y (0, t) ,y (L, t) ,u,v) : R

n × R
n × R

m × R
l → R

m is a nonlinear function.
Thus the auxiliary control vectorv actually influences the boundary control vectoru, which in turn controls the

behavior of the closed-loop transport system described by Eq. (4) and the periodic boundary condition (5).

III. Optimal Control Theory

Optimal control and optimization theories of hyperbolic systems has been studied extensively in mathematical
literature. Within the theoretical framework of systems governed by PDEs, control of such systems can exist as dis-
tributed control, boundary control, interior pointwise control, or others. Hou and Yan studied the long time behavior
of solutions for an optimal distributed control problem forthe Navier-Stokes equations.6 Nguyen et al investigated a
flow control problem with interior pointwise control.7 Optimal control problems of transport systems with boundary
control have been examined for many different types of constraints imposed on either state or control variables. Ray-
mond and Zidani investigated necessary optimality conditions in the form of a Pontryagin’s minimum principle for
semilinear parabolic equations with pointwise state constraints and unbounded control.8 Casas et al established second
order sufficient conditions for local optimality of elliptic equations with pointwise constraints on the boundary control
and equality and set-constraints on state variables.9 Kazemi obtained adjoint equations for a degenerate hyperbolic
equation.10

Adjoint method is well-known in optimal control and optimization theories as it provides an indirect method
for solving optimization problems. For a transport system governed by hyperbolic equations, two types of adjoint
formulation are used: discrete adjoint and continuous adjoint. Any hyperbolic equation can generally be discretized
into a system of ODEs by means of numerical discretization techniques such as finite-difference or finite-element
methods. If the adjoint method is formulated with the discretized hyperbolic equations, then this is known as discrete
adjoint method. On the other hand, continuous adjoint method is normally applied directly to the original hyperbolic
equations. This method has been used in aerodynamic design optimization studies involving the Euler and Navier-
Stokes equations.11 Nadarajah et al compared the discrete and continuous adjoint methods in aerodynamic design
optimization and suggested that the continuous adjoint method affords a certain advantage over the discrete adjoint
method for Navier-Stokes flow problems.12 In the present study, we apply this method to the present hyperbolic system
with nonlinear differential equation constraints on a periodic boundary condition. To formulate the continuous adjoint
method for this system, we seek a solution of the hyperbolic system above that minimizes the following multi-objective
cost functional

min J (y,u,v) =

∫ tf

0

∫ L

0

L1 (y) dxdt+

∫ T

0

L2

(

y0,yL,u,v
)

dt (8)
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whereL1 is an objective function defined over the continuum of the transport system,L2 is an objective function
defined on the system boundary, and the superscripts0 andL are short hand notations denoting the associated vector
quantity evaluated atx = 0 andx = L, respectively.

The following assumptions are required:
(A1): Eq. (4) admits smooth solutions for shock-free conditions.
(A2): v ∈ L2, the space of real value functions inR

l for which the norm‖v‖ is square-integrable.
(A3): The Fréchet derivatives ofL1, L2, B, g, andf with respect toy, y0, yL, u, andv exist and are bounded

so as to satisfy the Lipschitz condition.
We note that Eq. (4) also has discontinuous solutions known as entropy solutions14which will not be treated here.
The transport system above is posed as a boundary control problem of hyperbolic equations with nonlinear differ-

ential equation constraints.
Lemma 1:LetD be a nonlinear differential operator andD∗ be its adjoint differential operator such that for some

z (x, t) ∈ R
n andλ (x, t) ∈ R

n

Dz = A
∂z

∂x

D∗λ =
∂

∂x

(

A>λ
)

where the superscript> is the transpose operator, then the following inner productoperation inL2 is equivalent

〈Dz,λ〉(x,t) = −〈z, D∗λ〉(x,t) +
〈

zL,
(

A>λ
)L
〉

t
−
〈

z0,
(

A>λ
)0
〉

t
(9)

Proof: The inner product〈Dz,λ〉(x,t) in L2 is

〈Dz,λ〉(x,t) =

∫ tf

0

∫ L

0

λ>Dzdxdt

Integrating by parts yields

∫ tf

0

∫ L

0

λ>Dzdxdt = −

∫ tf

0

∫ L

0

z>D∗λdxdt +

∫ tf

0

[

(

zL
)> (

AL
)>

λL −
(

z0
)> (

A0
)>

λ0
]

dt

We define the following inner products

〈

zL,
(

A>λ
)L
〉

t
−
〈

z0,
(

A>λ
)0
〉

t
=

∫ tf

0

[

(

zL
)> (

AL
)>

λL −
(

z0
)> (

A0
)>

λ0
]

dt

Equation (9) is thus obtained.
Definition 1:LetF : X → Y be a functional withX,Y in Banach spaces andα ∈ X . If there exists a continuous

linear operator∇F (α) : X → Y for any variationδ ∈ X such that

lim
ε→0

∥

∥

∥

∥

∇F (α) δ −
F (α + εδ) − F (α)

ε

∥

∥

∥

∥

= 0

then∇F (α) is called a Gâteaux derivative ofF atα.16

Definition 2:The following Hamiltonians are defined

H1 (y, x,λ) = L1 − λ>B (10)

H2

(

y0,yL,u,v,µ
)

= L2 + µ>f (11)

We are now ready to state the necessary conditions for optimality.
Theorem:If (A1)-(A3) are fulfilled and if(ȳ, ū, v̄) is an optimal solution of Eq. (8), then there exist adjoint

variablesλ (x, t) : [0, L]× [0, tf ] → R
n andµ : [0, tf ] → R

k that satisfy the following dual adjoint system

λt +
(

A>λ
)

x
+H>

1,y = 0
(

A>λ
)L

= H>

2,yL + g>

yL

(

A>λ
)0

+ g>

yLH>

2,y0

λ (x, tf ) = 0











(12)
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µ̇ = −H>
2,u − g>

u

(

A>λ
)0

− g>
u
H>

2,y0

µ (tf ) = 0

}

(13)

with a terminal time transversality condition

∫ L

0

L1|t=tf
dx+ L2|t=tf

= 0 (14)

such that the optimal control is one that satisfies the following Pontryagin’s minimum principle

v̄ = arg min
v∈Vad

H2

(

ȳ0, ȳL, ū,v,µ
)

(15)

Proof: Let α = (z,p) be solutions toβ = (ȳ, ū) in variations for a variationq in v̄, then the variation in the cost
functional from Eq. (8) is computed as

∆J (q) = ∇J (β) + J (β, v̄ + q) − J (β, v̄) > 0

where the Gâteaux derivative ofJ atβ is evaluated as

∇J (β) =
〈

H>
1,y, z

〉

(x,t)
− 〈λ, zt〉(x,t) − 〈λ, Dz〉(x,t) +

〈

H>

2,y0 , z0
〉

t

+
〈

H>

2,yL , z
L
〉

t
+
〈

H>
2,u,p

〉

t
− 〈µ, ṗ〉t + δt

(

∫ L

0

L1|t=tf
dx+ L2|t=tf

)

From the boundary condition (5), we have the following variations

z0 = g>

yLzL + g>
u
u

From Lemma 1 and the variations in the boundary condition (5)plus vanishing variations in initial conditions for
Eqs. (4) and (7), this becomes

∇J (β) =
〈

λt +D∗λ +H>
1,y, z

〉

(x,t)
−〈z (x, tf ) ,λ (x, tf )〉

x
+
〈

g>

yLH
>

2,y0 + g>

yL

(

A>λ
)0

+H>

2,yL −
(

A>λ
)L
, z
〉

t

+
〈

g>
u

(

A>λ
)0

+ g>
u
H>

2,y0 +H>
2,u + µ̇>,p

〉

t
− µ> (tf )p (tf ) + δt

(

∫ L

0

L1|t=tf
dx+ L2|t=tf

)

Setting∇J (β) = 0 for arbitrary variationα results in Eqs. (12)-(14). Then the variation in the cost functional
becomes

∆J (q) =

∫ tf

0

[

H2

(

ȳ0, ȳL, ū, v̄ + q,µ
)

− µ> ˙̄u
]

dt−

∫ tf

0

[

H2

(

ȳ0, ȳL, ū, v̄,µ
)

− µ> ˙̄u
]

dt > 0

This leads to the Pontryagin’s minimum principle

H2

(

ȳ0, ȳL, ū, v̄ + q,µ
)

> H2

(

ȳ0, ȳL, ū, v̄,µ
)

for all values of the variationq.
Equation (15) is the equivalent Weierstrass condition for strong variations. For weak variations whenv is uncon-

strained andL1 andL2 are convex, the Pontryagin’s principle leads to the Legendre-Clebsch condition15

H2,v

(

ȳ0, ȳL, ū, v̄,µ
)

= 0

H2,vv

(

ȳ0, ȳL, ū, v̄,µ
)

> 0

}

(16)
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IV. Linear-Quadratic Optimal Control for Scalar Hyperboli c Systems

Linear advection hyperbolic equations are used to model some transport processes that involve small-amplitude
wave propagation in only one direction such as pressure wavepropagation in a fluid continuum. Our objective is to
develop a linear-quadratic regulator (LQR) for the following linear advection equation

1

α (x)

∂y

∂t
+
∂y

∂x
+ β (x, t) y + w (x, t) = 0 (17)

wherey (x, t) ∈ R is a transport state variable,α (x) > 0 is the wave speed,β (x, t) is a dissipative term, andw (x, t)
is a disturbance.

Equation (17) is subject to a zero initial condition and a periodic boundary condition for a closed-loop system

y (0, t) = Gu (t) +Hy (L, t) (18)

whereu (t) ∈ R
m is a boundary control vector,G : R → R × R

m is a constant-valued matrix, andH is a constant.
The following linear dynamics is imposed on the boundary control vectoru with a zero initial condition

u̇ = Cu + Dv + Ey (0, t) + Fy (L, t) (19)

whereC : R → R
m ×R

m is a constant-valued state transition matrix,D : R → R
m ×R

l is a constant-valued control
transition matrix, andE andF are constants.

We want to minimize the following linear-quadratic cost functional with respect tov for a fixed final timetf

min J =

∫ tf

0

[

1

2
Py2 (0, t) +

1

2
u>Qu +

1

2
v>Rv

]

dt (20)

whereP ≥ 0, Q ≥ 0, andR > 0 are weighting factors.
The dual adjoint systems from (12) and (13) for the optimal control problem are given as

∂λ

∂t
+

∂

∂x
(αλ) − βαλ = 0 (21)

α (L)λ (L, t) = Hα (0)λ (0, t) +HPy (0, t) +
(

F> +HE>
)

µ (22)

µ̇ = −Qu−
(

C> + G>E>
)

µ − G>α (0)λ (0, t) − G>Py (0, t) (23)

with the transversality conditionsλ (x, tf ) = 0 andµ (tf ) = 0 along with the stationary condition obtained from Eq.
(16)

Rv + D>µ = 0 (24)

Equations (17)-(19) and (21)-(23) form a two-point boundary value PDE-ODE problem. Even though the PDEs
are linear and scalar, the two-point boundary conditions (18) and (22) pose a challenge in obtaining a general feedback
control solution. To see this, we solve Eq. (17) using the characteristic method which yields the following solution

y (x, t) =

{

0 t < td (x)

a (x, t) [f (t− td (x)) − q (x, t)] t ≥ td (x)
(25)

wheretd (x) is a variable transport time delay,a (x, t) is a wave decay factor, andq (x, t) is a forcing function due to
the disturbancew (x, t)

td (x) =

∫ x

0

dσ

α (σ)

a (x, t) = exp

[

−

∫ x

0

β (σ, t− td (x) + td (σ)) dσ

]

q (x, t) =

∫ x

0

w (σ, t− td (x) + td (σ))

a (σ, t− td (x) + td (σ))
dσ
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The functionf (t− td (x)) represents the wave propagation and must be determined fromthe boundary condition
(18) as

f (t) = Gu (t) +Ha (L, t) [f (t− td (L)) − q (L, t)] (26)

Let T = td (L) be a transport delay period, then Eq. (25) has a series solution

f (t) = Gu (t) +

n
∑

k=1

[

k−1
∏

m=0

Ha (L, t−mT )

]

Gu (t− kT )−

n
∑

k=0

[

k
∏

m=0

Ha (L, t−mT )

]

q (L, t− kT ) (27)

Similarly, the solution of Eq. (20) is given as

α (x) λ (x, t) =

{

0 τ < τd (x)
a(L,t)
a(x,t) g (τ − τd (x)) τ ≥ τd (x)

(28)

whereτ = tf − t, τd (x) = T − td (x), and

g (τ) = HPy (0, t) +HP
n
∑

k=1

[

k−1
∏

m=0

Ha (L, t+mT )

]

y (0, t+ kT ) +
(

F> +HE>
)

µ (t)

+
(

F> +HE>
)

n
∑

k=1

[

k−1
∏

m=0

Ha (L, t+mT )

]

µ (t+ kT ) (29)

Equations (27) and (29) illustrate the nature of a closed-loop transport system whereby the solutions are expressed
as time-shifted series of the transport delay period. The resulting ODEs (19) and (22) thus will contain the time-shifted
series. Therefore, in general a feedback control is difficult to obtain. Nonetheless, there are two simplified solutions
in the limit that we need to consider. The first case is associated with a short time horizon whentf < T , for which
λ (0, t) = 0 from Eq. (29) since the system must be causal. Then, we get from Eqs. (27) and (29)

y (0, t) = Gu (t) −Ha (L, t) q (L, t) (30)

y (L, t) = −a (L, t) q (L, t) (31)

The second case is associated with an infinite time horizon when tf → ∞, for which f (t− T ) ' f (t) and
g (τ − T ) ' g (τ). The infinite time horizon case is possible if the time scale of the linear advection equation is much
greater than the time scale of the ODE. Equivalently, this time scale separation results in|α (x)| � ρ (C), whereρ is
the spectral radius of the matrixC. Utilizing the series identity

1

1 −Ha (L)
=

∞
∑

k=0

Hkak (L) (32)

we obtain

y (0, t) =
Gu (t) −Ha (L, t) q (L, t)

1 −Ha (L, t)
(33)

y (L, t) =
a (L, t) [Gu (t) −Ha (L, t) q (L, t)]

1 −Ha (L, t)
− a (L, t) q (L, t) (34)

α (0)λ (0, t) =
a (L, t)

[

HPy (0, t) +
(

F> +HE>
)

µ (t)
]

1 −Ha (L, t)
(35)

In essence, the solution for anytf may be assumed to be bounded between these two cases. we introduce a factorγ
that represents the effect of the time horizon such that0 ≤ γ ≤ 1, with γ = 0 corresponding to the first case andγ = 1
corresponding to the second case. Then, we are now able to obtain a feedback controlv in terms of the boundary
controlu and the transport states at the boundariesy (0, t) andy (L, t)

v (t) = −R−1D>Wu− R−1D>Va (L, t) q (L, t) (36)
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whereW andV are solutions of the following matrix Riccati equations using a backward sweep method by letting
µ = W∆u + Va (L, t) q (L, t)

WCe + C>
e W − WDR−1D>W + Qe = 0 (37)

Ce

>V − WDR−1D>V − WS− U = 0 (38)

with
Ce = C + EG + γ (F + EH)Ga (L, t) [1 − γHa (L, t)]−1

Qe = Q + G>PG [1 − γHa (L, t)]
−2

S = (F + EH) [1 − γHa (L, t)]−1

U = G>PH [1 − γHa (L, t)]
−2

We see that the optimal control solution of a linear advection equation has a form of a Riccati solution. The Riccati
equation contains modified matrices that incorporate the dynamics of the linear advection equation. The control is a
state feedback and a disturbance feedforward where the forcing functionq (L, t) is the disturbance that is delayed by
the time delayT . Thus, the control would not be responsive during this time delay. We note that the control can also
be written in an output feedback form by noting that

a (L, t) q (L, t) = γa (L, t) y (0, t) − y (L, t) (39)

so that
v (t) = −R−1D>Wu − R−1D>Vγa (L, t) y (0, t) + R−1D>Vy (L, t) (40)

V. Flow Control Application

We now apply the general theory to a flow control problem to regulate the test section Mach number in a closed-
circuit wind tunnel. An example is the NASA Ames 11-Foot Transonic Wind Tunnel as shown in Fig. 2.

Fig. 2 - Closed-Circuit Wind Tunnel

The fluid transport process in a closed-circuit wind tunnel is a good example of a closed-loop transport process
whereby the fluid flow is recirculated through a compressor providing the boundary control action. The compressor
is controlled by two auxiliary dynamical processes: a drivemotor dynamics, and an inlet guide vane (IGV) angle
dynamics. By controlling the drive motor speed and the IGV angle, the flow in the test section can be set as desired.

The full nonlinear model of this system is described by Eq. (4) with y (x, t) =
[

ṁ p0 T0

]T

and

A =









u pA
p0

ṁu
2T0

ρ0c2

ρA
u
[

1 − (k−1)T
T0

]

ρ0c2u
T0

(k−1)T
ρA

− (k−1)2Tu

kp0

u
[

1 + (k−1)T
T0

]









, B =









ṁuξ
2

kp0u3f
2c2

[

1 − (k−1)T
T0

]

− (k−1)2Tu3ξ

2c2









whereṁ is the mass flow,p is the pressure,T is the temperature ,ρ is the density,u is the flow speed,c is the speed
of sound,ξ is a loss factor,A is the cross sectional area, and the subscript 0 denotes the stagnation condition.
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The compressor provides a boundary control action atx = 0 andx = L that results in a total pressure rise that
recirculates the flow. Using an empirical model, we obtain the forcing functiong in the periodic boundary condition
(5) for the wind tunnel model as

g (y (L, t) ,u) =















ṁ (L, t)

p0 (L, t)

(

1 +
4
∑

i=2

2
∑

j=0

cijθ
jωi

c

)



b1 − b2
ṁc

3�

i=1

2�

j=0

dijθjωi
c





T0 (L, t)
{

1 + b3ωc

ṁc

[

p0(0,t)
p0(L,t) − 1

]}















(41)

whereω is the compressor speed,θ is the IGV angle, andbi, cij , dij are empirical coefficients derived from experi-
mental compressor performance measurements.

The drive motors employ a drive motor speed control system that utilizes a variable resistance device known as
rheostat to control the motor speed. By varying a rotor resistanceRr in the rheostat, the motor torque changes.
The difference between the motor torque and the aerodynamictorque causes the motors to accelerate or decelerate
according to the following equation

Jmω̇ =
KmRrωs (ωs − ω)

[Rs (ωs − ω) +Rrωs]
2

+ L2
sω

2
s (ωs − ω)

2 −Ka [p0 (0, t) − p0 (L, t)] (42)

whereJm is the motor inertia,Rs is the stator resistance,Ls is the stator inductance,ωs is the synchronous speed,
Km is the motor torque constant, andKa is the aerodynamic torque.

The inlet guide vanes are adjustable with movable trailing edge flaps and are driven by DC field motors that are
controlled by a field voltageVa according to the following equation

(

b+
KTKE

Ra

)

θ̇ +
niρ (L, t)u2 (L, t) bfc

2
fCH,θ

2N2
θ =

KTVa

NRa

−
niρ (L, t)u2 (L, t) bfc

2
fCH

2N2
(43)

whereb is the viscous friction,KT is the motor torque constant,KE is the back-emf constant,Ra is the shunt
resistance,N is the gear reduction ratio,ni is the number of inlet guide vanes, andbf , cf , CH,θ, CH are the span,
chord, hinge moment coefficient derivative, and hinge moment coefficient of the inlet guide vane flaps; respectively.

Typically, an aircraft model installed inside the test section undergoes a series of angle of attack changes. As the
aircraft model pitch angle changes, the momentum loss across the test model generates a flow disturbance that travels
downstream from the test section to the compressor. Becauseof the fluid transport delay that exists in the system, the
feedback control at the compressor normally lags the Mach number response in the test section by a time delay since
the disturbance has not yet reached the compressor before this time. This disturbance causes a pressure perturbation
that leads to a drop in the test section Mach number. Without any corrective control before the time delay, the Mach
number will drop below a prescribed tolerance. This motivates us to seek a model predictive control to minimize this
Mach number deviation by accounting for the time delay.

The flow perturbation can be modeled by Eq. (17) withy (x, t) = ∆p0 (x, t) as the total pressure perturbation.
Linearization of Eq. (41) and neglecting the mass flow and total temperature perturbations results in Eq. (17) with the
following parameters

α (x) = ū (x)

[

1 +
k − 1

1 + k−1
2 M̄2 (x)

]

> 0

β (x, t) = −
kM̄2 (x) ξ̄ (x)

[

1 + kM̄2 (x)
]

2
[

1 − M̄2 (x)
]

w (x, t) =
k ¯p0,∞M̄

2
∞f (x)CD (φ (t))Am

2AtLm

whereM is the Mach number,CD is the aircraft model drag coefficient as a function of the pitch angleφ, the overbar
denotes the nominal condition, the subscript∞ denotes test section condition,Am is the model reference wing area,
Lm is the model length,At is the test section area, andf = 1 for x1 ≤ x ≤ x2 within the test section andf = 0
otherwise.
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From the boundary condition (41), we obtain a linearized boundary condition

y (0, t) = G∆u (t) +Hy (L, t) (44)

wherey (0, t) is the total pressure perturbation at the compressor exit,y (L, t) is the total pressure perturbation at the

compressor inlet, and∆u =
[

∆ω ∆θ ψ
]>

is the boundary control error vector comprising of the compressor

speed error∆ω, the IGV flap position error∆θ, and the compressor speed error integralψ =
∫ t

0
∆ωdτ . The error

integral is designed to ensure a zero steady state error in the compressor speed. In essence, the control scheme is a

proportional-integral control. The matrixG =
[

∂p0(0,t)
∂ω

∂p0(0,t)
∂θ

0
]

andH = ∂p0(0,t)
∂p0(L,t) are the partial derivatives

evaluated from the boundary condition (41).
The flow disturbance also creates a perturbation in the actuator dynamics of the drive motors and the IGV system,

thus resulting in the following state equation

∆u̇ = C∆u + D∆v + Ey (0, t) + Fy (L, t) (45)

where∆v =
[

∆Rr ∆Va

]>

is the augmented control input vector comprising of the augmented drive motor rotor

resistance∆Rr, the augmented IGV motor applied field voltage∆Va, andC, D, E, F are partial derivatives evaluated
from the actuator dynamics, Eqs. (42) and (43), as

C =







∂ω̇
∂ω

∂ω̇
∂θ

0
∂θ̇
∂ω

∂θ̇
∂θ

0

1 0 0






, D =







∂ω̇
∂Rr

0

0 ∂θ̇
∂V

0 0






, E =







∂ω̇
∂p0(0,t)

0

0






, F =







∂ω̇
∂p0(L,t)

∂θ̇
∂p0(L,t)

0







Our objective is to design a control law that minimizes the Mach number deviation in the test section. In particular,
we would like to maintain the Mach number within a required accuracy of±0.001 at all times. First, we apply the
following feedback control law to illustrate the problem with time delay

v (t) = v̄ − R−1D>W∆u (t) − R−1D>Vγa (L, t) y (0, t) + R−1D>Vy (L, t) (46)

wherev̄ is a nominal control input at the steady state operation of the wind tunnel.
A control simulation is performed for a test section Mach numberM̄∞ = 0.6 at a total pressurēp0,∞ = 2116

psf for a representative test model. The model support on which the test model is mounted has a second-order time
response as follows

φ = φd

(

1 − e−
t

tm cosωmt
)

(47)

whereφd is the desired pitch angle set point,tm = 5 sec is the time constant, andωm = 0.1 is the frequency of the
model support.

To compute the amplification factora (x, t) that appears in the control law, we solve the following PDE that is
completely equivalent to the integral form of Eq. (25)

1

α (x)

∂a

∂t
+
∂a

∂x
+ β (x, t) a = 0 (48)

subject to an initial conditiona (x, 0) = 1 and a boundary conditiona (0, t) = 1.
To solve for Eq. (48), we discretize the wind tunnel into 45 nodes with∆x = 18.074 ft andL = 795 ft. We then

apply the following upwind finite-difference method to computea (x, t)

ai,j+1 = aij − αi−1∆t

(

aij − ai−1,j

∆x
+ βi−1,jai−1,j

)

(49)

wherei = 2, 3, . . . , 45 is the index in thex axis,j = 1, 2, . . . , is the time index, and∆t = 0.01 sec is chosen in order
to satisfy the Courant-Friedrichs-Lewy (CFL) stability condition13

max
αi∆t

∆x
≤ 1 (50)

The solution surface ofa (x, t) is plotted in Fig. 3
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Fig. 3 - Solution Surface ofa (x, t)

The dynamic matrices corresponding to the test section Machnumber of 0.6 at a compressor speed of 455 rpm are
computed to be

C =







−0.059709 1.3223 0

0 −1.3565× 10−5 0

1 0 0






, D =







−0.32543 0

0 7.6358× 10−5

0 0






, E =







−0.0019318

0

0






,

F =







−0.0011615

3.1673× 10−9

0






, G =

[

−684.50 25.5415 0
]

, H = 1.6013

The weighting factors are selected such thatP = 0.001, Q = diag (0.01, 0), andR = diag
(

1, 1 × 10−7
)

. The
weighting factorsQ22 andR22 for the IGV system are much smaller than the weighting factors Q11 andR11 for
the drive motors since we also want to control the compressorspeed as accurately as possible and want the IGV flap
position to compensate for the total pressure disturbance generated by the test model.

Fig. 4(a) is a plot of the computed augmented rotor resistance input to the drive motors forγ = 0 andγ = 1.
To regulate the test section Mach number, it can be seen that the rotor resistance must decrease as this would result
in a corresponding increase in the drive motor input torque to compensate for the increase in the total pressure loss
generated by the test model. Fig. 4(b) is a plot of the computed augmented IGV motor applied field voltage input to
the IGV system forγ = 0 andγ = 1. In both Figs. 4(a) and 4(b), the effect ofγ can generally be interpreted as the
degree of control efforts. Thus, the control effort ranges from a minimum value forγ = 0 to a maximum value for
γ = 1. It is also noted that the augmented control inputs exhibit atime delay of about 3 sec, which is the time it takes
for the disturbance generated by the test model in the test section to propagate downstream to the compressor inlet.
This time delay is computed to be∆T = td (L) − td (xt) = 3.56 sec.

The response of the total pressure perturbation due to the optimal control augmentation is plotted in Fig. 5. As
can be seen, the total pressure perturbation between the compressor exit atx = 0 and the test section atx = 470 ft
is effectively controlled to a zero value as desired. A drop in the total pressure occurs immediately right after the test
model and propagates to the compressor inlet.
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Fig. 4 - Augmented Control Inputs to Drive Motors (a) and IGV System (b)

Fig. 5 - Solution Surface of Total Pressure Perturbation

As noted in Fig. 4, the time delay∆T causes the control to be unresponsive during this time delaywhile the
aerodynamic flow condition is changing continuously in the wind tunnel. This is an inherent problem with the Mach
number feedback control in a wind tunnel. To effectively handle the total pressure disturbance generated by the test
model, a model predictive control is proposed using the following disturbance feedforward control law

v (t) = v̄ − R−1D>W∆u (t+ ∆t) − R−1D>Va (L, t+ ∆t) q (L, t+ ∆t) (51)

where∆u (t+ ∆t) andq (L, t+ ∆t) must be computed a priori from a model described by Eq. (17), (44), and (45).
Thus, the augmented control inputs are evaluated in advanceof the error signals and then added to the nominal

control values. Therefore, the model predictive control isstrictly an open-loop control that is based on the computed
control inputs from the math model using the estimated drag coefficient of the test model and time history of the model
support. The computed test section Mach number response to the optimal control augmentation using the feedback
control in Eq. (46) is plotted in Fig. 6(a) and using the modelpredictive control in Eq. (51) is plotted in Fig. 6(b).
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Fig. 6 - Test Section Mach Number Response to Feedback Control (a) and to Model Predictive Control (b)

It can be seen that the feedback control brings the test section Mach number closer to its set point, but is unable
to maintain the test section Mach number to within a requiredaccuracy of±0.001 at all times. This is due to the
time delay which causes the aerodynamic flow condition to change without any control input during the first 3.56 sec,
thereby resulting in the test section Mach number dropping below the tolerance band before the augmented control
inputs to the drive motors and the IGV system become sufficient to compensate for the total pressure perturbation. In
contrast, the model predictive control is clearly much moreeffective in maintaining the test section Mach number well
within the required accuracy at all times. In all cases, bothtypes of control forγ = 0 seems to suffer a steady state
error due to an insufficient control effort. The Mach number response surface is plotted in Fig. 7, showing the Mach
number distribution throughout the wind tunnel. The test section Mach number response atx = 470 ft is in “trough”
below the first spike. The two spikes correspond to locationsbehind the test model and at the compressor inlet. This
plot illustrates that a boundary control process can usually only control a closed-loop system at either one of the two
boundaries. In this case, the cost functional is designed toregulate the system response atx = 0.

Fig. 7 - Mach Number Response Distribution

The compressor speed response to the control input augmentation is plotted in Fig. 8(a) for the feedback control
and in Fig. 8(b) for the model predictive control. The feedback control is unable to maintain the compressor speed
set point to within a required accuracy of±0.1 rpm. In contrast, the required compressor speed accuracy iseasily
achieved by the model predictive control forγ = 1.
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Fig. 8 - Compressor Speed Response to Feedback Control (a) and to Model Predictive Control (b)

The IGV flap position response to the control input augmentation is plotted in Figs. 9(a) and 9(b) corresponding
respectively to the feedback control and the model predictive control. The time delay in the IGV flap position response
is noticeable between the feedback control and the model predictive control. Thus, this suggests that the effectiveness
of the model predictive control is attributed largely to thecontrol input augmentation to the IGV system.
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Fig. 9 - IGV Flap Position Response to Feedback Control (a) and to Model Predictive Control (b)

To demonstrate the effectiveness of the model predictive optimal control forγ = 1 over the enitre subsonic
operating envelope, we compute the control augmentation for all Mach numbers from 0.4 to 0.9. The results are
plotted in Fig. 10. As can be seen, the model predictive optimal control is highly effective for all Mach numbers up to
0.8. The Mach number perturbation is well within the tolerance of±0.001. However, at a Mach number of 0.9, there is
a rapid increase in the Mach number perturbation that exceeds the tolerance. The sudden change in the Mach number
perturbation at a Mach number of 0.9 is directly attributed to the well-known phenomenon of transonic flow where
many linear perturbation theories break down near a Mach number of unity. The termβ (x, t) in the linear perturbation
model reveals that it becomes undefined forM = 1. Thus, the validity of this model excludes the transonic region
near a Mach number of unity.
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Fig. 10 - Test Section Subsonic Mach Number Responses

In general, the accuracy of a model predictive control is predicated upon the goodness of the parameter estimation
of the disturbance. Any significant deviation from the planned trajectory of the total pressure disturbance will likely
cause the Mach number to not meet the required accuracy. Thus, to implement a predictive control scheme, it is
necessary to have a priori knowledge of the time variation ofthe total pressure disturbance as a function of the drag
coefficient of the test model. During a pitch polar, the drag coefficient generally varies as a function of the inputs
parameters that include the pitch angle, the Mach number, and the Reynolds number. A parameter estimation process
can be established using a recursive least-squares or a neural network algorithm to estimate on-line the drag coefficient
from the input parameters. In addition, using the knowledgeof the time response of the model support system, a
trajectory of the total pressure disturbancew (t) can be estimated and used to predict the control augmentation from
the math model. Using the predictive results of the control augmentation, the compressor control would be switched to
an open-loop mode and begin its actuation simultaneously with the model support system. At the end of the actuation,
the compressor control would then be switched back to a feedback mode. Because the control is a feedforward scheme,
stability should not be an issue. The model predictive optimal control thus potentially offers a significant advantage
over the current feedback control approach which has been demonstrated by simulations and observations to be unable
to hold the test section Mach number to within a specified accuracy during a continuous pitch polar of the test model.

VI. Conclusions

This paper presents some recent results in optimal control of a distributed-parameter system governed by first order,
quasilinear hyperbolic partial differential equations that is controlled by a boundary control process via a periodic
boundary condition. The boundary control is further constrained by an ordinary differential equation that models
an actuator dynamics that exists at the boundary of the system. The resulting coupled hyperbolic partial-ordinary
differential equation system arises in many physical applications involving transport processes such as traffic or fluid
flow. Necessary conditions for optimality is derived for this system using the adjoint method which is formulated in
terms of dual Hamiltonian functions for the partial differential equation and ordinary differential equation systems.
A linear-quadratic optimal control is developed that results in a two-point boundary value problem involving time-
shifted solutions due to the periodic boundary condition. By introducing a time horizon parameter, the optimal control
problem is found to have a Riccati solution. The results are applied to design a model predictive control for the Mach
number in a wind tunnel. A feedback control and and a model predictive control are designed to regulate the test
section Mach number due to a total pressure disturbance generated by a test model pitch motion. The feedback control
is unable to maintain the test section Mach number to within aprescribed tolerance due to a time delay in the control
inputs. In contrast, the model predictive control is shown to be highly effective in maintaining the test section Mach
number to within the required accuracy by relying on a model prediction of the control inputs in advance in order to
eliminate the time delay effect.
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